Affine complete ortholattices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete affine manifolds: a survey

An affinely flat manifold (or just affine manifold) is a manifold with a distinguished coordinate atlas with locally affine coordinate changes. Equivalently M is a manifold equipped with an affine connection with vanishing curvature and torsion. A complete affine manifold M is a quotient E/Γ where Γ ⊂ Aff(E) is a discrete group of affine transformations acting properly on E. This is equivalent ...

متن کامل

Affine complete locally convex hypersurfaces

An open problem in affine geometry is whether an affine complete locally uniformly convex hypersurface in Euclidean (n + 1)-space is Euclidean complete for n ≥ 2. In this paper we give the affirmative answer. As an application, it follows that an affine complete, affine maximal surface in R3 must be an elliptic paraboloid.

متن کامل

Amalgamation of Ortholattices

We show that the variety of ortholattices has the strong amalgamation property and that the variety of orthomodular lattices has the strong Boolean amalgamation property, i.e. that two orthomodular lattices can be strongly amalgamated over a common Boolean subalgebra. We give examples to show that the variety orthomodular lattices does not have the amalgamation property and that the variety of ...

متن کامل

Interpolation in Ortholattices

If (L,∨,∧, 0, 1, ) is a complete ortholattice, f : Ln → L any partial function, then there is a complete ortholattice L containing L as a subortholattice, and a ortholattice polynomial p with coefficients in L such that p(a1, . . . , an) = f(a1, . . . , an) for all a1, . . . , an ∈ L. Iterating this construction long enough yields a complete ortholattice in which every function can be interpola...

متن کامل

Quasivarieties of Modular Ortholattices

Lattice of subquasivarieties of variety generated by modular ortholattices MOn, n 2 ! and MO! is described. In [3] Igo sin has proved that any subquasivariety of the variety M! is a variety. M! denoted variety generated by modular lattice M!, where M! is the lattice of length two with ! atoms. For short proof of this fact see [2]. In this note we present an orthomodular counterpart of this resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1977

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1977-0460196-x